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Abstract 

In fixed-bed pyrolysis reactors, the stacking of sample particles often leads to higher yields of 

solid pyrolysis products (chars) than are obtained from other types of reactors. This 

phenomenon is particularly emphasised in thermogravimetric (TG) balances, which unlike 

many fixed-bed reactors, do not sweep gas through the stationary bed of pyrolysing sample. 

Gas is swept through the sample bed to reduce the residence time of tar vapours in close 

proximity to chars, which affects the extent to which these vapours will condense onto the 

surface of chars and repolymerise, thus increasing char yield. Depth of the sample bed affects 

this residence time, and thus affects char yield. In this work, the sensitivity of typical analyses 

of biomass thermogravimetry to variations in bed depth have been assessed. Results of these 

analyses, including product distributions, proximate compositions, and kinetic predictions, 

carried out on microcrystalline cellulose and birch wood hydrochar samples produced at 

temperatures ranging from 160 to 280 °C, have been shown to be sensitive to variations in 

bed depth, and it has been demonstrated that this sensitivity is amplified at higher heating 

rates and temperatures. Thus, when a single sample mass is used for any of these typical TG 

analyses, as is common in published literature, the results are not fundamental properties of 

the material tested but rather a product of the exact experimental design employed. Future 

work is needed to identify reactor and experimental design guidelines to minimise this 

sensitivity in fixed-bed reactors. 
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1. Introduction 

Thermogravimetric analysis (TGA) is a popular and convenient technique for the study of 

biomass pyrolysis. Advanced thermogravimetric (TG) balances can run dozens of samples in 

sequence, while collecting and auto-analysing time-resolved yield and gas-composition data 

without operator intervention. Because of this, TGA is widely used for biomass 

characterisation and the study of biomass pyrolysis. In particular, TGA is often used to 

compare the properties of different biomass feedstocks for thermochemical conversion,1,2 to 

track the evolution of the solid state throughout thermochemical conversion processes,3,4 and 

to measure the apparent kinetics of thermochemical conversion reactions.5-9 Despite the 

attractive features of TG balances, their configuration damages their accuracy and fidelity. 

This work demonstrates the effects of this configuration on the results of typical analyses of 

biomass thermogravimetry, including char yields, kinetic predictions, and proximate 

compositions. 

1.1. Particle Stacking in Fixed-Bed Reactors 

TG balances are often used as fixed-bed pyrolysis reactors, which are defined by a 

stationary bed of sample, as opposed to a fluidised bed in which sample particles can move 

freely throughout the heated region. This fixed-bed configuration inherently leads to stacking 

of sample particles, which substantially affects the mechanism of pyrolysis.10 

Primary pyrolysis processes produce liquid-phase tars, composed principally of 

monomers and oligomers of lignocellulosic components (cellulose, hemicellulose, and lignin). 

Volatilised tars in the gas phase may either crack to form lighter volatiles, or condense onto a 

surface. When tars condense back onto the surface of chars, they may repolymerise, resulting 

in increased char yield. This reactivity of tar in the presence of char has been demonstrated 

by numerous researchers.11-15 In this way, the more time gas-phase pyrolysis products spend 

in close proximity to char particles (the sample bed), the greater char yield will be, and any 

experimental parameter that affects this residence time, will thus affect char yield.16-19 

To minimise the effect of repolymerisation on char yield, inert gas is often flowed through 

the sample bed to sweep away gas-phase tars, but in fixed-bed reactors the effects of particle 

stacking are unavoidable, as gas-phase pyrolysis products do not move as quickly through the 
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sample bed as does sweep gas. Gonenc et al.16 showed that char yield decreased equivalently 

when sweep-gas velocity was increased 100-fold as when bed depth was decreased just 5-

fold. This is because gas-phase tars move through the sample bed in a manner reminiscent of 

size-exclusion chromatography, with sweep gas acting as the mobile phase: tar vapours 

continually adsorb and desorb onto the surface of chars as they move through the complex-

and-evolving pore structures of the fixed sample bed.20 

1.2. Thermogravimetric Balance Configuration 

TG balances, commercially available instruments used for TGA, typically consist of a small 

platinum or ceramic sample pan hanging from a balance hook inside a sealed furnace. Not only 

are particles in this sample pan stacked, but gas does not flow through the bed (helping to 

sweep gas-phase products out of the sample matrix) but rather over top, or up and around the 

sample pan.21 For this reason, TG balances lead to particularly slow convective mass transfer 

of gas-phase pyrolysis products out of the sample bed, and therefore emphasise the effects of 

interphase-mass-transfer-related parameters (particle and sample-bed morphology) on the 

extent of repolymerisation, and thus on char yield. Char yields from these devices are 

therefore not representative of the primary pyrolysis behaviour of the sample material, and 

are sensitive to experimental parameters which influence the residence time of gas-phase 

products in close proximity to char particles, and thereby the extent of interphase mass 

transfer (tar condensation onto chars allowing repolymerisation). Here, we vary one such 

parameter (bed depth via sample mass) in order to quantify this sensitivity, as well as that of 

other common analyses of biomass thermogravimetry, including kinetic modelling and 

proximate analysis. 

2. Experimental 

2.1. Materials 

In order to resolve the general influence of interphase-mass-transfer-related parameters 

on the results of typical TG analyses, the present study has utilised a variety of starting 

materials.  50 µm particle size microcrystalline cellulose (Sigma-Aldrich, CAS No. 9004-34-6) 

was used as a replicable standard because it is the primary component of most biomass, and 
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is readily commercially available. Additionally, birch wood hydrochars produced at different 

hydrothermal carbonization (HTC) temperatures (160, 180, 200, 220, 230, 240, 260 and 280 

°C) and a residence time of 1 hr, were employed to investigate the influence of fixed carbon 

content on the sensitivity of proximate analysis results to the previously described effects. 

 

2.2. Thermogravimetric Analysis of Cellulose 

Samples of microcrystalline cellulose between 1 mg and 20 mg were prepared in 100 µL 

platinum sample pans. In a TA Instruments Q500 TGA (Mettler-Toledo Ltd., 64 Boston Road, 

Beaumont Leys, Leicester, LE4 1AW), samples were held at room temperature in nitrogen for 

15 min, then heated at 15 °C min-1 to 105 °C, and held at this temperature for 20 min. The mass 

of sample remaining after this program was termed the dry mass. Samples were then heated 

at rates between 2 °C min-1 and 15 °C min-1 to peak temperatures between 300 °C and 450 °C, 

and held at peak temperature for 30 min. The mass of sample remaining after this program 

was termed the pyrolysed mass. 

2.2.1. Yield Calculations 

Cellulose was found to contain no ash via proximate analysis (see section 2.3), so char yield 

was determined on a dry ash-free (daf) basis as 𝑝𝑦𝑟𝑜𝑙𝑦𝑠𝑒𝑑 𝑚𝑎𝑠𝑠/𝑑𝑟𝑦 𝑚𝑎𝑠𝑠 . From this, 

conversion, α, was calculated as 1 − 𝑐ℎ𝑎𝑟 𝑦𝑖𝑒𝑙𝑑 and mass loss as 𝛼 × 100%. This is a time-

based yield, but as the TGA program has both isothermal and non-isothermal regimes, a 

temperature-based yield parameter provides additional information. T50 and R50 are the 

temperature at which 𝑚𝑎𝑠𝑠 𝑙𝑜𝑠𝑠 = 50% , and the rate of mass loss at that temperature, 

respectively.22 

2.2.2. Kinetic Calculations 

Pre-exponential factor, A, and activation energy, E, were calculated using the Kissinger 

method23—the most extensively used multiple-heating-rate model-free method of 

determining kinetic parameters from thermogravimetry.24 This method was applied to a first-

order reaction model according to International Confederation for Thermal Analysis and 

Calorimetry (ICTAC) Kinetics Committee recommendations for performing kinetic 
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computations on thermal analysis data.24 The governing relation for this model is described 

by eq. (1), where β is the heating rate, Tm is the temperature at the maximum degradation rate, 

and R is the gas constant. 

ln
𝛽

𝑇𝑚
2

= ln
𝐴𝑅

𝐸
−

𝐸

𝑅𝑇𝑚
 

  (1) 

From eq. (1), E and A can be determined from the slope and intercept, respectively, of a plot 

of ln 𝛽/𝑇𝑚
2   vs. 1/𝑇𝑚. Several assumptions underlie this governing relation: 

1. Reaction rate, 𝑑𝛼/𝑑𝑡 , is maximised. Temperature at this maximum rate is Tm and 

conversion is αm. 

2. Reaction rate depends on temperature and conversion. Temperature dependence is 

determined by the Arrhenius equation for non-isothermal processes, and conversion 

dependence is determined by first-order process kinetics. The validity of the first-order 

assumption was tested by measuring the dependence αm on β. No dependence indicates 

validity of the assumption.24 

3. Degradation is a single kinetic step. The validity of this single-step assumption was 

tested by comparing values of E extracted from eq. (1) with those from a plot of ln ∆𝑡1/2 

vs. 1/𝑇𝑚 , where ∆𝑡1/2 is the width at half height of the differential thermogravimetry 

(DTG) peak, 𝑑𝛼/𝑑𝑡 . Close agreement of these values indicates validity of the 

assumption.25 

2.3. Proximate Analysis of Birch Wood Hydrochars 

Hydrothermal carbonization of birch wood was carried out in a 50 mL stainless steel batch 

reactor26 at eight different temperatures ranging from 160 to 280 °C with a fixed residence 

time of 1 hr, and a biomass to water mass ratio of 30%.  Hydrochar samples were recovered 

via filtration and dried in a ventilated oven at 105 °C overnight before use.  

Proximate analysis of birch wood hydrochars was performed in a TA Instruments Q500 

TGA using a modified version of the TGA program described by ASTM D758227, which lays out 

standards for proximate analysis of coal and coke via TGA. This method has also been shown 
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to produce consistent results when applied to biomass.1,2 A slower TGA program based on this 

standard was developed to ensure ample time for heat transfer from the surrounding gas to 

the sample bed; this program is detailed below. 

1. Drying: 2 mg and 20 mg samples were held at room temperature in nitrogen for 15 min, 

then heated at 15 °C min-1 to 105 °C, and held at this temperature for 20 min. The mass 

of sample remaining after this program was termed the dry mass. 

2. Pyrolysis: Dried samples were heated at 15 °C min-1 to 900 °C, held at this temperature 

for 7 min, and then cooled at 15 °C min-1 to 450 °C. The mass of sample remaining after 

this program was termed the pyrolysed mass. 

3. Combustion: Pyrolysed samples were heated at 15 °C min-1 to 750 °C in air, and held at 

this temperature for 15 min. The mass of sample remaining after this program was 

termed the ash mass, and the daf mass was determined as 𝑑𝑟𝑦 𝑚𝑎𝑠𝑠 − 𝑎𝑠ℎ 𝑚𝑎𝑠𝑠. 

Volatile matter was then determined as (𝑑𝑟𝑦 𝑚𝑎𝑠𝑠 − 𝑝𝑦𝑟𝑜𝑙𝑦𝑠𝑒𝑑 𝑚𝑎𝑠𝑠)/𝑑𝑎𝑓 𝑚𝑎𝑠𝑠 ×

100%, and fixed carbon as (𝑝𝑦𝑟𝑜𝑙𝑦𝑠𝑒𝑑 𝑚𝑎𝑠𝑠 − 𝑎𝑠ℎ 𝑚𝑎𝑠𝑠)/𝑑𝑎𝑓 𝑚𝑎𝑠𝑠 × 100%. 

3. Results and Discussion 

3.1. Yield Analysis 
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Figure 1: mass loss of cellulose on pyrolysis via TG balance by sample mass. Samples of 50 µm particle size 

microcrystalline cellulose between 1 mg and 20 mg were heated at rate of 2 °C min-1 in nitrogen to peak 

temperatures between 300 °C and 450 °C, and held at peak temperature for 30 min. daf: dry ash-free. 

 

Figure 1 shows that mass loss of cellulose, during pyrolysis via TG balance to peak 

temperatures between 300 °C and 450 °C, followed by a 30 min hold at peak temperature, was 

found to decrease linearly with sample mass (1 mg ≤ daf mass ≤ 20 mg). While the 1 to 3 p.p. 

(percentage point) maximum effect is relatively small, it is clear from fig. 1 that this magnitude 

is greater than that of experimental error. This trend is the result of increased 

repolymerisation upon increased interphase mass transfer caused by increasing bed depth 

via sample mass. While such a trend could also indicate increasing thermal lag of the sample 

bed with increasing depth, this is unlikely to be the case at a heating rate of 2 °C min-1. Richter 

and Rein28 have performed a thorough analysis of the microscale effects of heat transfer 

limitations on cellulose pyrolysis in TG balances, and have determined the critical mass, above 

which the temperature difference between the sample bed and surrounding gas (thermal lag) 

is greater than 1 °C, for heating rates up to 100 °C min-1. Assuming perfect thermal contact 

with surroundings to ensure a conservative estimate, the critical mass for a heating rate of 2 

°C min-1 was predicted to be greater than 50 mg. 
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Figure 2: T50 and R50 of cellulose via TGA by sample mass. Samples of 50 µm particle size microcrystalline cellulose 

between 1 mg and 20 mg were heated at rate of 2 °C min-1 in nitrogen. T50: the temperature at which 50% of daf 

mass has been lost, assuming daf mass = dry mass. R50: the rate of mass loss at T50. daf: dry ash-free. 

 

Another indication the system was not heat-transfer limited during these tests are the 

trends of T50 and R50 with respect to sample mass. Figure 2 shows that R50 was found to 

decrease with sample mass, while T50 did not show a clear trend. This indicates that the 

temperature at which cellulose degradation occurs is not affected by bed depth, but that the 

rate of this degradation is. Were the decreasing mass loss trend a function of increasing heat 

transfer limitation, T50 would surely be affected as the recorded temperature became 

increasingly far from that of the sample bed. The decreasing R50 trend is consistent with 

increased rates of repolymerisation (which acts as the reverse degradation reaction) upon 

increasing bed depth. 

While it is clear from fig. 1 and fig. 2 that the magnitude of the effects of bed depth on 

these yield-based parameters is small, this variation is amplified when yield data are 

differentiated to calculate kinetic parameters. Section 3.2 demonstrates the effects of bed 

depth on kinetic predictions based on these parameters. 
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3.2. Kinetic Analysis 

Pre-exponential factors were determined from intercepts of the Kissinger plots pictured 

in fig. 3(a) for 2 mg and 20 mg samples of cellulose as 2.96 × 1016 min−1 and 2.57 × 1013 min−1, 

respectively. Activation energies for 2 mg and 20 mg samples were calculated from slopes of 

the Kissinger plots as 190 kJ mol-1 and 158 kJ mol−1, respectively. Figure 3(a) shows that while 

overall agreement between slopes of the Kissinger and ln ∆𝑡1/2  plots are reasonable, some 

deviation is visible, particularly in the bottom-right-hand corner of both the 2 mg and 20 mg 

axes. This indicates some error in the assumption that pyrolysis of cellulose proceeds as a 

single step.25 This is expected, given that cellulose is thought to pyrolyse via a complex 

network of competing pathways. In particular, at low temperatures, dehydration reactions are 

thought to dominate, but as temperature increases, depolymerisation reactions (which allow 

for repolymerisation to occur) take over.29, 30 As heating rate changes, so does the time spent 

in these regimes, causing changes to the shapes of DTG peaks, which are picked up by the peak-

width-based ln ∆𝑡1/2 analysis. Quantitatively, this error corresponds to a 9 to 11% deviation 

in E. Compared to the observed 17% variation in E due to sample mass, this relatively 

substantial error suggests that the single-step approximation is not valid. However, the 

Kissinger method is often used without verifying this assumption,5-7 which is even less 

applicable when multiple lignocellulosic components are present, so predictions using the 

above parameters are still indicative of the magnitude of variation due to bed depth of typical 

kinetic analyses of TG data resulting from the repolymerisation-emphasising configuration of 

TG balances. 
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Figure 3: Tests of the single-step (a) and first-order (b) assumptions applied to extract kinetic parameters from 

thermogravimetry data using the Kissinger method. (a) Combined Kissinger (●,○) and ln ∆𝑡1/2  (plots for 

pyrolysis of cellulose via TG balance at heating rates between 2 °C min-1 and 15 °C min-1. Black symbols (●,▲) 

refer to 2 mg sample results, and 2 mg kinetic parameters (pre-exponential factor and activation energy) are 

determined by the solid lines on the restricted axis. White symbols (○,△) refer to 20 mg sample results, and 20 

mg kinetic parameters are determined by the dashed lines. Divergence of line intercepts from corners of the 

defined axes indicate error in the single step assumption. ∆𝑡1/2: differential thermogravimetry peak width at half 

height; Tm: temperature at maximum reaction rate. (b) Results of the first-order assumption test for 2 mg (◇) 

and 20 mg (×) samples. Solid and dashed lines are approximate models of the dependence of conversion at 

maximum reaction rate (αm) on heating rate (β) of 2 mg and 20 mg samples, respectively. Dependence indicates 

error in the first-order assumption. 

 

Figure 3(b) shows that while αm is not dependent on heating rate for 2 mg samples, it 

decreases with heating rates greater than 5 °C min-1 for 20 mg samples. At 15 °C min-1, 20 mg 

samples lost approximately 58% less mass by the time their rate of mass loss was maximised 
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than 2 mg samples did. This dependence indicates error in the assumption that the pyrolysis 

of cellulose is approximately first-order,24 but only for 20 mg samples at higher heating rates. 

Repolymerisation, taken as an elementary step, relies on multiple reactants to produce a 

single polymer, and is thus unlikely to follow first-order kinetics. This may indicate that within 

this range of very slow heating rates, there is a threshold below which the effect of bed depth 

on repolymerisation is minimal. This could be due to decreased volatilisation of tars at lower 

heating rates, so that repolymerisation is less dependent on interphase mass transfer 

(condensation) and related experimental parameters. However, heating-rate dependence of 

the effect of sample mass on Tm was also observed (see fig. 3(a) Kissinger plots), which could 

indicate that these dependencies are related to heat transfer limitations. Richter and Rein28 

characterise a 20 mg sample heated at 15 °C min-1 as experiencing approximately 1 °C thermal 

lag, while the observed variation in Tm was approximately 5 to 6 °C, so it is likely that this 

heating-rate dependence is at least partially related to mechanistic effects. Despite the first-

order approximation failing for 20 mg, 15 °C min-1 samples, removing these from the Kissinger 

plot does not substantially affect results of this analysis, so kinetic predictions have been made 

with the previously stated parameters. 

Figure 4(a) depicts the difference between models of rate constant as a function of 

temperature, 𝑘(𝑇) = 𝐴 exp(−𝐸/𝑅𝑇), produced from 2 mg and 20 mg kinetic parameters. The 

models predict that a 20 mg sample will degrade up to two orders of magnitude more quickly 

at low temperatures (100 °C to 281 °C), and more slowly at high temperatures (281 °C to 1000 

°C), than a 2 mg sample. Figure 4(b) shows that while this trend was confirmed experimentally 

(α equivalence point within 15 °C of the model in this case), the magnitude of the effect at low 

temperatures was overpredicted by the models. Furthermore, the models overpredicted mass 

loss by 7 to 9 p.p. and underpredicted the maximum difference in conversion between the two 

models, (∆𝛼)𝑚𝑎𝑥, by approximately 40%. Though the models underpredicted the magnitude 

of the effect of sample mass in the case of very slow heating to relatively low temperatures, 

fig. 4(c) and fig. 4(d), respectively, show that the models substantially diverge in the case of 

flash heating (1000 °C s-1) and high temperature holds (1000 °C). Flash heating produced a 
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(∆𝛼)𝑚𝑎𝑥 of approximately 0.52 in around 0.4 s, and holding at 1000 °C produced a (∆𝛼)𝑚𝑎𝑥 of 

approximately 0.91 in around 0.5 µs. 

 

 

 

Figure 4: Kinetic predictions of cellulose pyrolysis based on kinetic parameters calculated from 2 mg and 20 mg 

samples. (a) Rate constant, k, as a function of temperature by sample mass. (b) Fit of kinetic models to 

thermogravimetry data by sample mass. Cellulose was heated from 105 °C to 325 °C at a rate of 15 °C min-1, and 

then held at 325 °C for 30 min. α: conversion on a dry ash-free basis. (c) Kinetic predictions for heating cellulose 

from 25 °C to 525 °C at a rate of 1000 °C s-1 by sample mass. (d) Kinetic predictions for holding cellulose at 1000 

°C for 40 µs by sample mass. 

 

3.3. Proximate Analysis 

Figure 5 shows that a ten-fold increase in bed depth led to a 3 to 6 p.p. increase in fixed 

carbon and decrease in volatile matter of birch wood chars over the entire range of 

hydrothermal carbonisation (HTC) temperatures tested (160 °C to 280 °C). This effect was 

found to generally increase with HTC temperature, which is likely attributable to the greater 

proportion of fixed carbon in higher-temperature samples, allowing more char contact per unit 

volatilised tar, but could also be due to differences in char nature and/or morphology reducing 
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tar-cracking phenomena. However, higher HTC temperatures lead to lower hydrochar surface 

area and porosity due to the greater amount of spheroidal secondary char produced. 31-33 Thus, 

it is unlikely that morphology is the cause of the greater extent of repolymerisation in higher 

HTC temperature hydrochars. These results are consistent with increased repolymerisation 

as a function of increased bed depth, and represent substantial unreliability in this method of 

proximate analysis. The magnitude of this variation in proximate composition due to sample 

mass was between 8% and 16% of that due to the entire HTC process at 280 °C. Circumventing 

this error is not as simple as using a small and consistent sample size for proximate analysis, 

because the vast majority of 2 mg samples were insufficient to resolve ash content, which was 

revealed to be present with a discernible trend with respect to HTC temperature by the 20 mg 

sample results. It is also not feasible to simply apply a “fudge factor” to higher-sample-mass 

results, because the effect of sample mass is not constant with respect to sample composition, 

as demonstrated by the trend of this effect with respect to HTC temperature. 

 

 

 

Figure 5: Proximate composition of birch wood chars by hydrothermal carbonisation (HTC) temperature and 

sample mass. ●,○: volatile matter content of 2 mg and 20 mg samples, respectively. ▲,△: fixed carbon content of 

2 mg and 20 mg samples, respectively. daf: dry ash-free. 
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4. Conclusions 

1. Product distributions from pyrolysis of cellulose via TG balance are sensitive to 

variations in sample mass due to this device’s configuration emphasising the effect of 

bed depth on extent of tar repolymerisation. 

2. Despite simple kinetic models derived from TGA underpredicting this sensitivity under 

typical TGA conditions, high heating rate and high temperature conditions greatly 

amplify this sensitivity. 

3. Proximate analysis of biomass via TG balance is also sensitive to variations in sample 

mass. 

4. This sensitivity means the results of these typical TG analyses are not fundamental 

properties of the material tested when a single sample mass is used. 

5. This sensitivity is present in all fixed-bed reactors as a result of particle stacking. 

Guidelines for minimizing this sensitivity in fixed-bed reactors are needed, and future 

work will focus on identifying these. 
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